Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
J Phys Chem B ; 127(12): 2701-2707, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944080

RESUMO

Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique dSTORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by dSTORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by dSTORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).


Assuntos
Vesículas Extracelulares , Nanopartículas , Imagem Individual de Molécula , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Imagem Individual de Molécula/métodos
2.
Sci Rep ; 12(1): 3794, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260703

RESUMO

SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.


Assuntos
Microscopia/métodos , SARS-CoV-2/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/transmissão , COVID-19/virologia , Chlorocebus aethiops , Citoplasma/química , Citoplasma/ultraestrutura , Citoplasma/virologia , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestrutura , Células Gigantes/química , Células Gigantes/fisiologia , Hélio/química , Humanos , Íons/química , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
3.
DNA Cell Biol ; 41(3): 249-256, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171005

RESUMO

Extracellular vesicles (EVs) are a class of lipid bilayer membranes, containing lipids, nucleic acids (DNA and RNA), proteins, and other substances. They are produced by almost all types of cells and act as signaling intermediaries between cells and/or tissues through different mechanisms involving complex signals. EVs produced by each type of cells are composed of highly heterogeneous and inhomogeneous subgroups with different biological functions. Therefore, in the past few decades, researchers have tried to use different "labels" to define the subgroups of EVs, and explore the differences in them. However, a unified standard for defining the populations of EVs has not yet been established so far. In this study, we review and summarize the use of different "labels" to define subgroups of EVs.


Assuntos
Vesículas Extracelulares/classificação , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Ácidos Nucleicos/metabolismo , Tamanho da Partícula , Proteínas/metabolismo , Transdução de Sinais
4.
Cells ; 11(2)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053317

RESUMO

Recently, extracellular vesicle (EV)-mediated cell differentiation has gained attention in developmental biology due to genetic exchange between donor cells and recipient cells via transfer of mRNA and miRNA. EVs, also known as exosomes, play a role in maintaining paracrine cell communication and can induce cell proliferation and differentiation. However, it remains unclear whether adipose-derived stem cells (ASCs) can adopt dermal papilla (DP)-like properties with dermal papilla cell-derived extracellular vesicles (DPC-EVs). To understand the effect of DPC-EVs on cell differentiation, DPC-EVs were characterized and incubated with ASCs, of monolayer and spheroid cell cultures, in combination with the CAO1/2FP medium specialized for dermal papilla cells (DPCs). DPC-like properties in ASCs were initially evaluated by comparing several genes and proteins with those of DPCs via real-time PCR analysis and immunostaining, respectively. We also evaluated the presence of hair growth-related microRNAs (miRNAs), specifically mir-214-5P, mir-218-5p, and mir-195-5P. Here, we found that miRNA expression patterns varied in DPC-EVs from passage 4 (P4) or P5. In addition, DPC-EVs in combination with CAP1/2FP accelerated ASC proliferation at low concentrations and propagated hair inductive gene expression for versican (vcan), alpha-smooth muscle actin (α-sma), osteopontin (opn), and N-Cam (ncam). Comparison between the expression of hair inductive genes (vcan, α-sma, ctnb, and others), the protein VCAN, α-SMA and ß-Catenin (CTNB), and hair inductive miRNAs (mir-214-5P, mir-218-5p, and mir-195-5p) of DPC-EVs revealed similarities between P4 DPC-EVs-treated ASCs and DPCs. We concluded that early passage DPC-EVs, in combination with CAP1/2FP, enabled ASCs to transdifferentiate into DPC-like cells.


Assuntos
Tecido Adiposo/citologia , Derme/citologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Cabelo/metabolismo , Células-Tronco/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Transdiferenciação Celular , Vesículas Extracelulares/ultraestrutura , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054800

RESUMO

Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 µg BEVs with a therapeutic application time window of 4-24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24-48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.


Assuntos
Isquemia Encefálica/terapia , Encéfalo/metabolismo , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Forma Celular , Sobrevivência Celular , Vesículas Extracelulares/ultraestrutura , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055017

RESUMO

Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs' potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs. Gelatin methacryloyl (GelMA) hydrogels functionalised with the synthetic nanoclay laponite (LAP) have been shown to effectively bind, stabilise, and improve the retention of bioactive factors. This study investigated the potential of utilising a GelMA-LAP hydrogel to improve local retention and control delivery of epigenetically enhanced osteoblast-derived EVs as a novel bone repair strategy. LAP was found to elicit a dose-dependent increase in GelMA compressive modulus and shear-thinning properties. Incorporation of the nanoclay was also found to enhance shape fidelity when 3D printed compared to LAP-free gels. Interestingly, GelMA hydrogels containing LAP displayed increased mineralisation capacity (1.41-fold) (p ≤ 0.01) over 14 days. EV release kinetics from these nanocomposite systems were also strongly influenced by LAP concentration with significantly more vesicles being released from GelMA constructs as detected by a CD63 ELISA (p ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) enhanced proliferation (1.09-fold), migration (1.83-fold), histone acetylation (1.32-fold) and mineralisation (1.87-fold) of human bone marrow stromal cells (hBMSCs) when released from the GelMA-LAP hydrogel compared to the untreated EV gels (p ≤ 0.01). Importantly, the TSA-EV functionalised GelMA-LAP hydrogel significantly promoted encapsulated hBMSCs extracellular matrix collagen production (≥1.3-fold) and mineralisation (≥1.78-fold) in a dose-dependent manner compared to untreated EV constructs (p ≤ 0.001). Taken together, these findings demonstrate the potential of combining epigenetically enhanced osteoblast-derived EVs with a nanocomposite photocurable hydrogel to promote the therapeutic efficacy of acellular vesicle approaches for bone regeneration.


Assuntos
Regeneração Óssea , Argila , Vesículas Extracelulares/metabolismo , Gelatina , Hidrogéis , Metacrilatos , Nanogéis , Engenharia Tecidual , Fenômenos Químicos , Argila/química , Matriz Extracelular , Vesículas Extracelulares/ultraestrutura , Gelatina/química , Humanos , Hidrogéis/química , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , Silicatos
7.
Sci Rep ; 12(1): 262, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997141

RESUMO

Assessing genuine extracellular vesicle (EV) uptake is crucial for understanding the functional roles of EVs. This study measured the bona fide labelling of EVs utilising two commonly used fluorescent dyes, PKH26 and C5-maleimide-Alexa633. MCF7 EVs tagged with mEmerald-CD81 were isolated from conditioned media by size exclusion chromatography (SEC) and characterised using Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), MACsPlex immunocapture assay and immunoblots. These fluorescently tagged EVs were subsequently stained with C5-maleimide-Alexa633 or PKH26, according to published protocols. Colocalisation of dual-labelled EVs was assessed by confocal microscopy and quantified using the Rank-Weighted Colocalisation (RWC) algorithm. We observed strikingly poor colocalisation between mEmerald-CD81-tagged EVs and C5-Maleimide-Alexa633 (5.4% ± 1.8) or PKH26 (4.6% ± 1.6), that remained low even when serum was removed from preparations. Our data confirms previous work showing that some dyes form contaminating aggregates. Furthermore, uptake studies showed that maleimide and mEmerald-CD81-tagged EVs can be often located into non-overlapping subcellular locations. By using common methods to isolate and stain EVs we observed that most EVs remained unstained and most dye signal does not appear to be EV associated. Our work shows that there is an urgent need for optimisation and standardisation in how EV researchers use these tools to assess genuine EV signals.


Assuntos
Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Corantes Fluorescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Coloração e Rotulagem/métodos , Neoplasias do Colo do Útero/metabolismo , Neoplasias da Mama/ultraestrutura , Dextranos/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Fluoresceínas/metabolismo , Células HeLa , Humanos , Células MCF-7 , Nanopartículas , Compostos Orgânicos/metabolismo , Reprodutibilidade dos Testes , Neoplasias do Colo do Útero/ultraestrutura , Fluxo de Trabalho
8.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884574

RESUMO

Extracellular vesicles (EVs) are gaining increasing amounts of attention due to their potential use in diagnostics and therapy, but the poor reproducibility of the studies that have been conducted on these structures hinders their breakthrough into routine practice. We believe that a better understanding of EVs stability and methods to control their integrity are the key to resolving this issue. In this work, erythrocyte EVs (hbEVs) were isolated by centrifugation from suspensions of human erythrocytes that had been aged in vitro. The isolate was characterised by scanning (SEM) and cryo-transmission electron microscopy (cryo-TEM), flow cytometry (FCM), dynamic/static light scattering (LS), protein electrophoresis, and UV-V spectrometry. The hbEVs were exposed to various conditions (pH (4-10), osmolarity (50-1000 mOsm/L), temperature (15-60 °C), and surfactant Triton X-100 (10-500 µM)). Their stability was evaluated by LS by considering the hydrodynamic radius (Rh), intensity of scattered light (I), and the shape parameter (ρ). The morphology of the hbEVs that had been stored in phosphate-buffered saline with citrate (PBS-citrate) at 4 °C remained consistent for more than 6 months. A change in the media properties (50-1000 mOsm/L, pH 4-10) had no significant effect on the Rh (=100-130 nm). At pH values below 6 and above 8, at temperatures above 45 °C, and in the presence of Triton X-100, hbEVs degradation was indicated by a decrease in I of more than 20%. Due to the simple preparation, homogeneous morphology, and stability of hbEVs under a wide range of conditions, they are considered to be a suitable option for EV reference material.


Assuntos
Difusão Dinâmica da Luz/métodos , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica/métodos , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Humanos
9.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884751

RESUMO

In parallel to medical treatment of ovarian cancer, methods for the early detection of cancer tumors are being sought. In this contribution, the use of non-invasive static (SLS) and dynamic light scattering (DLS) for the characterization of extracellular nanoparticles (ENPs) in body fluids of advanced serous ovarian cancer (OC) and benign gynecological pathology (BP) patients is demonstrated and critically evaluated. Samples of plasma and ascites (OC patients) or plasma, peritoneal fluid, and peritoneal washing (BP patients) were analyzed. The hydrodynamic radius (Rh) and the radius of gyration (Rg) of ENPs were calculated from the angular dependency of LS intensity for two ENP subpopulations. Rh and Rg of the predominant ENP population of OC patients were in the range 20-30 nm (diameter 40-60 nm). In thawed samples, larger particles (Rh mostly above 100 nm) were detected as well. The shape parameter ρ of both particle populations was around 1, which is typical for spherical particles with mass concentrated on the rim, as in vesicles. The Rh and Rg of ENPs in BP patients were larger than in OC patients, with ρ ≈ 1.1-2, implying a more elongated/distorted shape. These results show that SLS and DLS are promising methods for the analysis of morphological features of ENPs and have the potential to discriminate between OC and BP patients. However, further development of the methodology is required.


Assuntos
Ascite/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/metabolismo , Ascite/patologia , Estudos de Casos e Controles , Difusão Dinâmica da Luz , Detecção Precoce de Câncer , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Hidrodinâmica , Luz , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Neoplasias Ovarianas/diagnóstico , Tamanho da Partícula , Espalhamento de Radiação
10.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943829

RESUMO

Acute myeloid leukemia (AML) cells can secrete trophic factors, including extracellular vesicles (EVs), instructing the stromal leukemic niche. Here, we introduce a scalable workflow for purification of immunomodulatory AML-EVs to compare their phenotype and function to the parental AML cells and their secreted soluble factors. AML cell lines HL-60, KG-1, OCI-AML3, and MOLM-14 released EVs with a peak diameter of approximately 80 nm in serum-free particle-reduced medium. We enriched EVs >100x using tangential flow filtration (TFF) and separated AML-derived soluble factors and cells in parallel. EVs were characterized by electron microscopy, immunoblotting, and flow cytometry, confirming the double-membrane morphology, purity and identity. AML-EVs showed significant enrichment of immune response and leukemia-related pathways in tandem mass-tag proteomics and a significant dose-dependent inhibition of T cell proliferation, which was not observed with AML cells or their soluble factors. Furthermore, AML-EVs dose-dependently reduced NK cell lysis of third-party K-562 leukemia targets. This emphasizes the peculiar role of AML-EVs in leukemia immune escape and indicates novel EV-based targets for therapeutic interventions.


Assuntos
Vesículas Extracelulares/metabolismo , Imunomodulação , Leucemia Mieloide Aguda/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Vesículas Extracelulares/ultraestrutura , Humanos , Terapia de Imunossupressão , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia
11.
Cell Mol Life Sci ; 79(1): 11, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951683

RESUMO

Trichomonas vaginalis is a common sexually transmitted extracellular parasite that adheres to epithelial cells in the human urogenital tract. Extracellular vesicles (EVs) have been described as important players in the pathogenesis of this parasite as they deliver proteins and RNA into host cells and modulate parasite adherence. EVs are heterogeneous membrane vesicles released from virtually all cell types that collectively represent a new dimension of intercellular communication. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery contributes to several key mechanisms in which it reshapes membranes. Based on this, some components of the ESCRT have been implicated in EVs biogenesis in other cells. Here, we demonstrated that VPS32, a member of ESCRTIII complex, contribute to the biogenesis and cargo sorting of extracellular vesicles in the parasite T. vaginalis. Moreover, we observe that parasites overexpressing VPS32 have a striking increase in adherence to host cells compared to control parasites; demonstrating a key role for this protein in mediating host: parasite interactions. These results provide valuable information on the molecular mechanisms involved in extracellular vesicles biogenesis, cargo-sorting, and parasite pathogenesis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita , Parasitos/citologia , Trichomonas vaginalis/citologia , Animais , Adesão Celular , Linhagem Celular , Vesículas Extracelulares/ultraestrutura , Humanos , Masculino , Parasitos/metabolismo , Próstata/parasitologia , Espectrometria de Massas em Tandem , Trichomonas vaginalis/metabolismo
12.
Curr Issues Mol Biol ; 43(3): 1997-2010, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34889902

RESUMO

BACKGROUND: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. METHODS: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. RESULTS: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. CONCLUSION: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.


Assuntos
Anestésicos/administração & dosagem , Anestésicos/farmacocinética , Vesículas Extracelulares/metabolismo , Animais , Biomarcadores , Linhagem Celular , Vesículas Extracelulares/ultraestrutura , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Isquemia/prevenção & controle , Precondicionamento Isquêmico , Masculino , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos
13.
Chem Pharm Bull (Tokyo) ; 69(11): 1075-1082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719589

RESUMO

Extracellular vesicles (EVs) have emerged as important targets in biological and medical studies because they are involved in diverse human diseases and bacterial pathogenesis. Although antibodies targeting the surface biomarkers are widely used to detect EVs, peptide-based curvature sensors are currently attracting an attention as a novel tool for marker-free EV detection techniques. We have previously created a curvature-sensing peptide, FAAV and applied it to develop a simple and rapid method for detection of bacterial EVs in cultured media. The method utilized the fluorescence/Förster resonance energy transfer (FRET) phenomenon to achieve the high sensitivity to changes in the EV amount. In the present study, to develop a practical and easy-to-use approach that can detect bacterial EVs by peptides alone, we designed novel curvature-sensing peptides, N-terminus-substituted FAAV (nFAAV) peptides. The nFAAV peptides exerted higher α-helix-stabilizing effects than FAAV upon binding to vesicles while maintaining a random coil structure in aqueous solution. One of the nFAAV peptides showed a superior binding affinity for bacterial EVs and detected changes in the EV amount with 5-fold higher sensitivity than FAAV even in the presence of the EV-secretory bacterial cells. We named nFAAV5, which exhibited the high ability to detect bacterial EVs, as an EV-sensing peptide. Our finding is that the coil-α-helix structural transition of the nFAAV peptides serve as a key structural factor for highly sensitive detection of bacterial EVs.


Assuntos
Vesículas Extracelulares/química , Peptídeos/química , 4-Cloro-7-nitrobenzofurazano , Sequência de Aminoácidos , Basidiomycota/química , Técnicas Biossensoriais , Vesículas Extracelulares/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Cinética , Lipossomos/química , Conformação Proteica
14.
Nat Commun ; 12(1): 6666, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795295

RESUMO

Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain.


Assuntos
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/ultraestrutura , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Fosfatidilserinas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
15.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830459

RESUMO

Bacteria of genus Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are believed to play an important role in the pathogenicity and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and MVs production depend on growth medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produces large MVs (100-300 nm) and small vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in the MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to degrade pectates. What is more, the pathogenicity test indicated that the MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that the MVs of ß-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that the MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that the MVs production in Pectobacterium strains, which overexpress a green fluorescence protein (GFP), is higher than in wild-type strains. Moreover, proteomic analysis revealed that the GFP was present in the MVs. Therefore, it is possible that protein sequestration into MVs might not be strictly limited to periplasmic proteins. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an effective secretion system.


Assuntos
Vesículas Extracelulares/genética , Interações Hospedeiro-Patógeno/genética , Pectobacterium/genética , Sistemas de Translocação de Proteínas/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Pectobacterium/ultraestrutura , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sistemas de Translocação de Proteínas/ultraestrutura , Transporte Proteico/genética , Virulência/genética
16.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831170

RESUMO

Extracellular vesicles released by mesenchymal stromal cells (MSC-EVs) are a promising resource for regenerative medicine. Small MSC-EVs represent the active EV fraction. A bulk analysis was applied to characterise MSC-EVs' identity and purity, with the assessment of single EV morphology, size and integrity using electron microscopy. We applied different methods to quantitatively analyse the size and surface marker expression in medium/large and small fractions, namely 10k and 100k fractions, of MSC-EVs obtained using sequential ultracentrifugation. Bone marrow, adipose tissue and umbilical cord MSC-EVs were compared in naive and apoptotic conditions. As detected by electron microscopy, the 100k EV size < 100 nm was confirmed by super-resolution microscopy and ExoView. Single-vesicle imaging using super-resolution microscopy revealed heterogeneous patterns of tetraspanins. ExoView allowed a comparative screening of single MSC-EV tetraspanin and mesenchymal markers. A semiquantitative bead-based cytofluorimetric analysis showed the segregation of immunological and pro-coagulative markers on the 10k MSC-EVs. Apoptotic MSC-EVs were released in higher numbers, without significant differences in the naive fractions in surface marker expression. These results show a consistent profile of MSC-EV fractions among the different sources and a safer profile of the 100k MSC-EV population for clinical application. Our study identified suitable applications for EV analytical techniques.


Assuntos
Apoptose , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Tamanho da Partícula , Tetraspaninas/metabolismo
17.
PLoS One ; 16(11): e0259732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780505

RESUMO

Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are bioactive particles that evoke beneficial responses in recipient cells. We identified a role for MSC-EV in immune modulation and cellular salvage in a model of SARS-CoV-2 induced acute lung injury (ALI) using pulmonary epithelial cells and exposure to cytokines or the SARS-CoV-2 receptor binding domain (RBD). Whereas RBD or cytokine exposure caused a pro-inflammatory cellular environment and injurious signaling, impairing alveolar-capillary barrier function, and inducing cell death, MSC-EVs reduced inflammation and reestablished target cell health. Importantly, MSC-EV treatment increased active ACE2 surface protein compared to RBD injury, identifying a previously unknown role for MSC-EV treatment in COVID-19 signaling and pathogenesis. The beneficial effect of MSC-EV treatment was confirmed in an LPS-induced rat model of ALI wherein MSC-EVs reduced pro-inflammatory cytokine secretion and respiratory dysfunction associated with disease. MSC-EV administration was dose-responsive, demonstrating a large effective dose range for clinical translation. These data provide direct evidence of an MSC-EV-mediated improvement in ALI and contribute new insights into the therapeutic potential of MSC-EVs in COVID-19 or similar pathologies of respiratory distress.


Assuntos
Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/virologia , COVID-19/patologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pneumonia/complicações , Pneumonia/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Humanos , Imunomodulação , Masculino , Modelos Biológicos , Pneumonia/patologia , Ratos Sprague-Dawley , SARS-CoV-2/fisiologia , Transdução de Sinais , Células THP-1
18.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34623384

RESUMO

The cystine-glutamate antiporter, xCT, supports a glutathione synthesis program enabling cancer cells to cope with metabolically stressful microenvironments. Up-regulated xCT, in combination with glutaminolysis, leads to increased extracellular glutamate, which promotes invasive behavior by activating metabotropic glutamate receptor 3 (mGluR3). Here we show that activation of mGluR3 in breast cancer cells activates Rab27-dependent release of extracellular vesicles (EVs), which can transfer invasive characteristics to "recipient" tumor cells. These EVs contain mitochondrial DNA (mtDNA), which is packaged via a PINK1-dependent mechanism. We highlight mtDNA as a key EV cargo necessary and sufficient for intercellular transfer of invasive behavior by activating Toll-like receptor 9 in recipient cells, and this involves increased endosomal trafficking of pro-invasive receptors. We propose that an EV-mediated mechanism, through which altered cellular metabolism in one cell influences endosomal trafficking in other cells, is key to generation and dissemination of pro-invasive microenvironments during mammary carcinoma progression.


Assuntos
DNA Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Quinases/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Empacotamento do DNA/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Invasividade Neoplásica , Receptores de Glutamato Metabotrópico/metabolismo , Tetraspanina 30/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas rab27 de Ligação ao GTP/metabolismo
19.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638611

RESUMO

Extracellular vesicles (EVs) are promising therapeutic tools in the treatment of cardiovascular disorders. We have recently shown that EVs from patients with Acute Coronary Syndrome (ACS) undergoing sham pre-conditioning, before percutaneous coronary intervention (PCI) were cardio-protective, while EVs from patients experiencing remote ischemic pre-conditioning (RIPC) failed to induce protection against ischemia/reperfusion Injury (IRI). No data on EVs from ACS patients recovered after PCI are currently available. Therefore, we herein investigated the cardio-protective properties of EVs, collected after PCI from the same patients. EVs recovered from 30 patients randomly assigned (1:1) to RIPC (EV-RIPC) or sham procedures (EV-naive) (NCT02195726) were characterized by TEM, FACS and Western blot analysis and evaluated for their mRNA content. The impact of EVs on hypoxia/reoxygenation damage and IRI, as well as the cardio-protective signaling pathways, were investigated in vitro (HMEC-1 + H9c2 co-culture) and ex vivo (isolated rat heart). Both EV-naive and EV-RIPC failed to drive cardio-protection both in vitro and ex vivo. Consistently, EV treatment failed to activate the canonical cardio-protective pathways. Specifically, PCI reduced the EV-naive Dusp6 mRNA content, found to be crucial for their cardio-protective action, and upregulated some stress- and cell-cycle-related genes in EV-RIPC. We provide the first evidence that in ACS patients, PCI reprograms the EV cargo, impairing EV-naive cardio-protective properties without improving EV-RIPC functional capability.


Assuntos
Síndrome Coronariana Aguda/terapia , Vesículas Extracelulares/fisiologia , Intervenção Coronária Percutânea , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cardiotônicos/metabolismo , Método Duplo-Cego , Fosfatase 6 de Especificidade Dupla/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Precondicionamento Isquêmico , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/prevenção & controle
20.
J Cell Mol Med ; 25(21): 10268-10278, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609045

RESUMO

Our previous research has found that miRNA-22 can inhibit the occurrence of pyroptosis by targeting GSDMD and decrease the production and release of inflammatory factors. In consideration of the therapeutic effects of mesenchymal stem cells (MSCs), MSCs-EV were loaded with miRNA-22 (EV-miRNA-22) to investigate the inhibitory effect of EV-miRNA-22 on the inflammatory response in SCI in rats in this study. LPS/Nigericin (LPS/NG) was used to induce pyroptosis in rat microglia in vitro. Propidium iodide (PI) staining was performed to observe cell permeability, lactate dehydrogenase (LDH) release assay was adopted to detect cytotoxicity, flow cytometry was conducted to detect pyroptosis level, immunofluorescence (IF) staining was utilized to observe the expression level of GSDMD (a key protein of pyroptosis), Western blot was performed to detect the expression of key proteins. For animal experiments, the T10 spinal cord of rats was clamped by aneurysm clip to construct the SCI model. BBB score, somatosensory evoked potential (SEP) and motor evoked potential (MEP) were performed to detect nerve function. HE staining and Nissl staining were used to detect spinal cord histopathology and nerve cell damage. EV-miRNA-22 could inhibit the occurrence of pyroptosis in microglia, suppress the cell membrane pore opening, and inhibit the release of inflammatory factors and the expression of GSDMD. In addition, EV-miRNA-22 showed higher pyroptosis-inhibiting ability than EV. Consequently, EV-miRNA-22 could inhibit the nerve function injury after SCI in rats, inhibit the level of inflammatory factors in the tissue and the activation of microglia. In this study, we found that miRNA-22-loaded MSCs-EV (EV-miRNA-22) could cooperate with EV to inhibit inflammatory response and nerve function repair after SCI.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/reabilitação , Animais , Biomarcadores , Fracionamento Químico/métodos , Modelos Animais de Doenças , Vesículas Extracelulares/transplante , Vesículas Extracelulares/ultraestrutura , Expressão Gênica , Microglia/metabolismo , Piroptose/genética , Ratos , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...